How To Drive On Mars

By
We may earn a commission from links on this page.

In "Packing for Mars," author Mary Roach details the strange science of putting humans in space. In this exclusive excerpt she details how we're practicing for driving on Mars in a remote and barren wasteland here on Earth. — Ed.

Once upon a time, astronauts tooled around the moon in an open two-seat electric buggy. It was the sort of thing one might see on a golf course or at one of those big Miami delis whose elderly patrons appreciate a lift to and from the parking lot. It gave lunar exploration in the seventies a relaxed, retirement-community feel. That's gone now. NASA's new rover prototypes more resemble a futuristic camper van. The entire cab is pressurized, which is good, because that means the astronauts can take off their bulky, uncomfortable white bubble-head EVA suits. The NASA shorthand for a pressurized interior is "a shirtsleeve environment," which makes me picture astronauts in polo shirts and no pants. If NASA ever builds an outpost on the moon,* astronauts will be undertaking rover traverses of unprecedented length and complexity. Teams of explorers will head out in two vehicles that rendezvous daily, finally returning to the base after two weeks on the roll. The new rovers sleep two and are equipped with a food warmer, a toilet with "privacy curtain," and cup holders (two).

Advertisement

Before actual prototypes of the pressurized rovers are tested in analog settings-earthly terrain that resembles the moon's surface-NASA is undertaking some rough cuts. These are two- day "excerpts" of fourteen-day traverses using similarly sized Earth vehicles. Simulated traverses help NASA get a hands-on sense of "performance and productivity"-how much gets done, how long things take, what works and what doesn't. This summer, the Small Pressurized Rover† simulator is an orange Humvee that lives at the HMP Research Station on Devon Island in Canada's High Arctic. (HMP stands for Haughton-Mars Project; Devon Island also resembles parts of Mars, and simulated Martian traverses have also taken place up here.)

Advertisement

In short, Devon Island is as close to space as you can come without a rocket.

Devon Island is also, like the moon or Mars, extremely inconvenient. It's thousands of miles from the things one needs for a geology expedition. Devon is uninhabited: no electricity, no cell coverage, no port or airport or supplies. That is part of the draw. Doing science here is a lesson in extreme planning. A moon or Mars analog, rather than the orb itself, is the place to figure out that, say, three people might be a better size for an exploration party than two. Or that it takes twice as long as the mission planners thought to drive a rover over a block field or twice as much oxygen to climb the loose scree on the slope of a crater. As someone at yesterday's pretraverse planning meeting said, "This is the place to make mistakes."

Advertisement

In the driver's seat of the Small Pressurized Rover simulator is planetary scientist and Haughton-Mars project director Pascal Lee. With support from NASA, the SETI Institute, the Mars Institute, and other partners, Lee established the HMP Research Station at Haughton Crater in 1997. Riding shotgun is Andrew Abercromby, of NASA's EVA Physiology Systems and Performance Project. Abercromby has blond, freckled good looks that are rescued from Buzz Lightyear all-American wholesomeness by a curious silver-dollar-sized circle of white hair and a Fyfe accent. Squeezed between Lee and Abercromby is HMP intern Jonathan Nelson and Lee's ubiquitous canine pal Ping Pong. Three all-terrain vehicles (ATVs) follow along behind the Humvee, carrying camp mechanic Jesse Weaver, spacesuit engineer Tom Chase, and me. Together we six are Small Pressurized Rover Alpha, or as "ground control" calls us, SPR-Alpha. Out on a different route, scheduled to rendezvous with us at the end of the day, are the men and women of SPR-Bravo.

We're driving slowly, keeping to the projected 6-miles-per- hour average of the actual rover. The low, gravelly hills are more uniformly grey here than elsewhere on the island. The scenery looks a lot like the moon's Taurus-Littrow Valley, where Apollo 17 astronauts explored by rover in 1972. Tooling along this barren terrain in a bulbous, visored ATV helmet, I find it easy, if embarrassing, to pretend I'm on the moon. Lee's evident excitement over the excursion-"Can you believe I get paid for this, barely?"-has become easier for me to understand. The place has made geeks of all of us.

Advertisement

Except our mechanic. Weaver never looks around to admire the scenery. I do, almost constantly. Yesterday, I came within inches of slamming the back of the ATV in front of me. Lunar scenery was a potentially dangerous distraction during Apollo landings. Concerned mission planners built gawp time into the minute-by-minute schedules. "We're allowed two quick looks out the window," Gene Cernan reminded Harrison Schmitt as they prepared to descend to the moon's surface during Apollo 17.

Lee stops the Humvee and consults the GPS. We've reached our first "way point." It's a geology pit stop: don spacesuits, climb a bluff, collect samples. Lee and Abercromby are standing outside the vehicle, fiddling with their communications headsets, which enable them to speak to each other and to "ground control," back at the HMP base. Around the rear of the Humvee, Chase has laid out simulated suit components on two mats. If this were the actual rover, the suits would be hanging off a pair of suit ports cut into the vehicle's rear panels. The astronauts would step into them from inside the rover, twist their torsos to unlock suit from port, and walk away. And then reverse the process when they return, leaving their suits dangling like shed exoskeletons. This way the suits don't clutter the cramped interior, and no dust gets inside.

Advertisement

Lee considered cutting holes in the back of the Humvee and trying to rig a pair of mimic suit ports for this week's simulations. Weaver was aghast. "I told him, ‘You are not cuttin' up the Humvee.'" The HMP mechanic is a high school student from Tennessee, barely shaving but possessed of a scraggy, hard-shelled sang-froid. Lee, who knows Weaver's mother, saw him rebuilding a dirt bike motor and offered him the greatest summer job in the history of summer jobs.

Lee genuflects on one of the mats while Chase prepares to lower the simulated PLSS (portable life support system-that bulky white astronaut backpack) onto Lee's torso. His arms are outstretched, as though in supplication, or delivery of a Broadway musical number. Chase's employer, Hamilton Sundstrand, makes both real and simulated spacesuits, both of which require valets. As Chase and Lee grapple with the PLSS simulator, Weaver takes a pack of Camels from a pocket. EVAs, to him, are more or less cigarette breaks. He's leaning toward a career in flight, but as a bush pilot, not an astronaut.

Advertisement

Abercromby is flipping through his cuff checklist. He has laminated it, because it rains a lot on Devon Island and because he has a head for planning. I don't know much about Abercromby, or NASA for that matter, but from what I've seen, I could imagine him running the place one day. He is taking these simulations very seriously. His 66-page Field Test Plan includes time lines, objectives, a four-page hazard analysis, an Off-Nominal Situation Resolution Tree and, for each simulated traverse, science priorities, targets of opportunity, get-ahead tasks, and mission rules. The document has been distributed to, but possibly not read by, everyone participating.

Abercromby steps into a set of the white Tyvek coveralls that are standing in for pressure suits. Ping Pong is biting one of Lee's gloves and dancing around the men's feet. "Does Ping Pong want to go EVA?" Lee is using his special, high-pitched Ping Pong voice. Abercromby interrupts them. "We should talk about get- ahead tasks and targets of opportunity."

Advertisement

Weaver watches through smoke. "You look like a crew of painters."

Once the helmets and life support simulators are on, Chase shoots some video. Abercromby looks mildly uncomfortable. Lee has no problem with the getup. Even a pretend spacesuit, I'm told but have some trouble believing, is a chick magnet. Lee, forty-five, is single and something of a heartthrob in the space community.

Advertisement

Rock hammer in hand, Lee heads up the slope of a hill. Abercromby follows with a sample bag. The teams' tasks are modeled on Apollo-era EVAs-selecting and bagging rock and soil samples, photographing, and taking gravity meter and radiation readings.

Timing is critical to an astronaut wandering around on an extra- terrestrial surface. Without knowing how long it takes to walk or drive a given distance on a certain kind of terrain, it's hard to know how much oxygen or battery life one will need. Apollo astronauts had to conform to "walkback constraints." These were, and are, first figured out by driving someone out on some lunar analog terrain, say, 3 miles from base, putting a suit simulator on him, marking the start time, and letting him walk back. Apollo astronauts were not allowed to drive farther from the safety of the Lunar Module than the distance they could walk without running out of oxygen, in case the rover broke down. (This is a rationale for having two rovers; if one malfunctions, the other can come pick up the stranded crew.)

Advertisement

It's late afternoon now. We've reached the end-of-the-day rendezvous point. Lee and Abercromby will overnight here, on primitive bunks in the back of the Humvee, while the rest of the team drives back to camp and then rejoins them in the morning. Bravo Party is nowhere in sight, so we wander over and take pictures of each other standing on the lip of a ravine. Later, I'll look at these photographs and it will appear that I was visiting a strip mine.

It's starting to rain, so we head back to the Humvee. Lee and Abercromby are in high spirits, having completed day one of NASA's very first pressurized roverlike traverse. "Just terrific," Abercromby is saying. "There can't be many places in the world where the terrain and the scale so closely approximate lunar-"

Advertisement

"Ground, this is Bravo Party." It's the radio.

NASA geophysicist Brian Glass, the SPR-Bravo traverse leader, reads out his GPS coordinates and a weather update. Read is the wrong verb. It's something between shout and spit. It's raining hard where they are. Their visibility is down to 300 feet. Bravo Party isn't in a Humvee. Their rover simulator is a Kawasaki Mule, a larger ATV with a short pickup bed. Their spark plugs got wet crossing streams that had appeared shallower in satellite photographs. One of the spare plugs was the wrong size. At one point, they were almost two hours behind.

Advertisement

Weaver flips his hood over his head. "Sounds like the other guys aren't havin' as much joy."

Reprinted from PACKING FOR MARS: The Curious Science of Life in the Void by Mary Roach. Copyright (c) 2010 by Mary Roach. Used with permission of the publisher, W.W. Norton & Company, Inc. [Photos courtesy Haughton Mars Project]